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Remote sensing observations (to assess interannual variability) were Drought Revisited

coupled with in situ flux measurements (to explore the mechanisms D O I I l I n ant TI I I l e S Cal e The definition of timescales at which drought has the strongest influence on vegetation production inspired a revisit of the

underlying ecosystem functional responses) mean:FVIMﬂ drought conditions at our sites during the early 215t century.

Drought is usually quantified at the
annual scale

Remote Sensing 3

The best models were selected based on Akaike’s Information Criterion adjusted for small
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served as a proxy for production. EVI Sep

annual drought conditions
NASA’s Terra MODIS
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A Drought years (defined by SPEI) at
annual vs, dominant timescale
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Interpretation and Conclusions

a) Forest — US-Fuf b) Shrubl

Discerning Mechanisms i vy
Ten Ameriflux sites across Southwest ecosystem types Using Flux GEP

. 4 P Efforts to define mechanisms focused on
disentangling the effects of precipitation
(P) and temperature (T) during the

* All biomes had sub-annual dominant timescales during which precipitation and temperature
strongly influence on vegetation production
* Forests: Dominant timescale is 9 months (January - September)
* Shrublands: Dominant timescale is 2 months (July and August)
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dominant timescale * Grasslands: Dominant timescale is 3 months (July - September)
* Forests: relative importance of P and T shifted : Consideration of the dominant timescale improves understanding of how different biomes
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precipitation and temperature are considered
* Drought severity in Southwest shrublands is overestimated
[t is necessary to consider sub-annual climate conditions when assessing drought severity and
predicting impacts of future climate change across Southwest biomes

* Shrublands: P and T during the monsoon season
dominantly influences production, (panel b and c)
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3 sites * Grasslands: production was positively correlated to
summer P and negatively correlated with T in July and
August, with little effect of T in September and October
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